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Abstract

Imitation learning enables agents to learn from expert demonstrations without
explicit reward engineering, but standard methods can fail when experts rely
on unobserved signals. In this work, we extend the CausalGym framework to
implement end-to-end causal imitation learning: we operationalize both single-
step and sequential π-backdoor criteria by (i) parsing environment SCMs, (ii)
discovering valid adjustment sets, (iii) collecting expert data via observational
queries, (iv) training causal imitators under discrete or continuous actions, and (v)
evaluating through interventions. We parameterize three testbeds—MNIST digits,
highway, and racetrack—each embedding latent confounders such as label noise,
fog, and sensor errors. Empirically, our causal imitators recover substantially more
expert reward than naive baselines in strongly confounded regimes, while matching
performance when bias is mild. These results validate the π-backdoor theory in
practice and demonstrate the utility of our toolkit for robust imitation learning in
realistic control tasks.

1 Introduction

Imitation learning has emerged as a powerful paradigm for training agents by leveraging expert
demonstrations, avoiding the need to know the reward function or estimate a surrogate for it, and
eliminating the danger of exploring hazardous environments while learning. However, standard
behavioral cloning (BC) and inverse reinforcement learning (IRL) methods assume that the learner
has access to all of the data that are perceived by the expert and influence its behavior. In many
real-world settings—autonomous driving, robotics, and human-computer interaction—experts rely
on latent information or sensors unavailable to the learner. When these hidden confounders bias the
observed demonstrations, naive imitation can fail catastrophically, producing policies that over- or
under-react in critical situations.

Causal inference offers a principled solution to this challenge by modeling not only statistical
associations but also the underlying mechanisms that generate data. Recent work on single-step causal
imitation learning (Zhang et al. [2020]) and its sequential extension (Kumor et al. [2021]) establishes
when and how an imitator can recover expert performance despite the presence of unobserved
confounders. Yet, despite these advances, a practical and easily applicable implementation that
bridges these algorithms with modern deep learning and meaningful empirical experiments has been
lacking.

The CausalGym initiative is a framework that is in prime position to connect causal imitation
learning algorithms with classic reinforcement learning environments. It provides abstractions for
Structural Causal Models and Pearl’s Causal Hierarchy alongside causal graph utility for the familiar
Gymnasium library (Towers et al. [2024]).

In this paper, we build on the CausalGym foundation to deliver a complete API for performing causal
imitation learning:
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(i) Operationalizing theory in code. We implement the single-step and sequential π-backdoor
criteria compatible with the CausalGym API, complete with adjustment set discovery, graph
utilities, and policy-training modules for both discrete and continuous action spaces.

(ii) Causal environment parameterization. We augment various classic Gymnasium tasks with
explicit SCMs that encode latent confounders, observable covariates, and expert policies,
exposing rich and dynamic causal graphs.

(iii) Empirical validation. Through extensive experiments on these environments, we show
that causal imitators outperform non-causal baselines under biasing latent conditions by
correctly identifying and conditioning on valid adjustment sets.

In the following sections, we review related work (Section 2), describe our causal imitation learning
framework (Section 3), detail the environment wrappers (Section 4), present experimental results
(Section 5), discuss future directions (Section 6), and comment on the impact of our contributions
(Section 7).

2 Literature review

We begin by situation our work within the broader field of Causal Reinforcement Learning (CRL)
and its specialized task of causal imitation learning.

Causal reinforcement learning. Bareinboim et al. [2025] and Bareinboim [2025] introduce the
CRL paradigm as a unifying framework where environments are modeled as SCMs and agents reason
over Pearl’s Causal Hierarchy to perform observational, interventional, and counterfactual queries.
They show how classic RL tasks—online learning, off-policy evaluation, and causal identification—
can be recast in this language. They also identify new tasks, including causal imitation learning under
confounding, that lie beyond standard RL modalities.

Single-step causal imitation. Zhang et al. [2020] formalize the one-shot imitation problem in
the presence of unobserved confounders, deriving a graphical π-backdoor criterion that determines
exactly which observed covariates suffice to recover the expert’s policy via behavioral cloning. When
the criterion holds, a standard BC algorithm on the identified adjustment set guarantees expert
performance; otherwise, data-dependent algorithms can still reach reasonable imitation performance.

Sequential causal imitation. Kumor et al. [2021] extend the backdoor criterion to multi-step
trajectories, defining per-time-step admissible sets Zi that unblock confounding at each decision
stage. They prove that these sequential π-backdoor sets are both necessary and sufficient for imitability
in episodic settings, and they give an efficient algorithm to recover them from the causal graph.

Causal IRL and GAIL. Ruan and Di [2022] and Ruan et al. [2023] bring causal adjustment into
adversarial imitation (GAIL), showing how to augment the GAIL objective so that it remains robust
when expert demonstrations suffer from unobserved confounding. Their Causal-GAIL wraps stan-
dard discriminator-actor-critic policy training within a causal IRL framework, matching occupancy
measures only after blocking backdoor paths.

Partial identification in MDPs. Ruan et al. [2024] investigate imitation under both transition and
reward confounding in full Markov Decision Processes (MDPs). They prove that if both dynamics
and rewards are non-identifiable, no policy can guarantee expert performance; but when exactly one
is identifiable, one can derive worst-case bounds and design robust imitation algorithms (CAIL-R
and CAIL-T) that extend GAIL with partial-identification techniques.

Taken together, these works lay a comprehensive theoretical foundational of CRL principles through
one-step and sequential imitation, and into more advanced settings of inverse reinforcement learning
and partial identification. Each development is also accompanied by experiments that prove feasibility
on low-dimensional, highly controlled tasks. In contrast, this paper scales these methods to richer
environments, implements them in an extensible Python API, and benchmarks performance on
complex, high-dimensional simulations.
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3 Causal imitation learning

Our goal is to take the elegant, graph-based algorithms of Zhang et al. [2020] (single-step) and Kumor
et al. [2021] (sequential) and weave them into a complete, end-to-end Python pipeline. Starting
from a wrapped Gymnasium environment that includes an SCM and PCH interface, our code (i)
introspects the causal graph, (ii) discovers valid adjustment sets, (iii) collects expert trajectories, (iv)
trains a causal imitator, and (v) evaluates it under interventions. In this way we make causal imitation
learning practical, reproducible, and broadly accessible.

3.1 Single-step causal imitation learning

We implement the one-shot π-backdoor algorithm of Zhang et al. [2020]. Its main components are:

1. Graph construction. We obtain the environment’s causal graph adjacency matrix and parse
it into a CausalGraph object, which captures directed and bidirected (confounding) edges.

2. Adjustment set discovery. We first compute the parent set

Paπ = {V ∈ Observed \ {X,Y } | V ∉Desc(X)} ,

then brute-force search over subsets of Paπ , checking d-separation in a mutilated graph Gx

until we find a valid π-backdoor set Z ⊆ Paπ .

3. Expert data collection. Using the PCH interface’s see() method, we collect expert
trajectories through simulations of the environment under the expert’s behavioral policy to
gather records (obs, x, · · ·) for a specified number of episodes.

4. Policy learning. Conditioned on each observed z ∈ Z, we train a conditional generator-
discriminator pair (GAN) to approximate the expert’s distribution P (X | Z).

5. Evaluation. We compare the causal imitator against baselines by two measures: L1 distance
between expert and imitator histograms, and cumulative reward using semantics to enforce
chosen actions.

3.2 Sequential causal imitation learning

We realize the sequential π-backdoor framework of Kumor et al. [2021] for multi-step episodes. Its
key stages are:

1. Graph utilities. Given an environment with a sequential graph with an arbitrary number of
timesteps, we obtain a CausalGraph object once again. For the sequential algorithm, vari-
ous helper routines are implemented as well: temporal_ordering, ancestral_graph,
ch_plus, pa_plus. These compute topological order, construct the induced ancestral
subgraphs, and compute effective children and parents in the presence of latent variables,
respectively.

2. Sequential π-backdoor discovery. Each piece of the Kumor et al. [2021] algorithm is
implemented:

(a) Finding OX , the set of observed variables Oi each mapped to its action Xi.
(b) Computing the Markov boundary of OX .
(c) Identifying the boundary actions whose children include unblocked variables.
(d) Assembling conditioning sets Zi from these components and the global temporal

ordering.

This yields a mapping {Xi ↔ Zi} that is both necessary and sufficient for imitation under
confounding.

3. Expert trajectories. Expert trajectories are collected using the PCH interface’s see() for a
specified number of episodes each lasting for a specified maximum number of steps or until
terminated. Full histories of (Xi, Oi) are generated.

4. Policy training. For each decision Xi, we extract all records at time i and train a deep
neural network, using cross-entropy loss for environments with discrete action spaces and
MSE loss for continuous action spaces. The result is an imitation policy set πi(oZi

).
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5. Imitator rollout and evaluation. Using the PCH interface’s do() method, we deploy the
imitator to perform in a real simulation of the environment, collecting cumulative rewards
and comparing it to expert performance.

Together, these two modules bring the theoretical criteria of Zhang et al. [2020], Kumor et al.
[2021] into a single, easy-to-use API: given any SCM-wrapped Gymnasium environment, one can
automatically discover valid adjustment sets, train a causal imitator, and quantify its gains over naive
baselines. Additionally, this paper expands on the sequential algorithm in Kumor et al. [2021] by
generalizing it to any number of timesteps, and any configuration of inter-timestep causal relationships
including handling of confounders that are sampled once, at every timestep, or as a Markov chain.

4 Environments

In our framework, each environment is a wrapper around a standard Gymnasium task (or in the case
of MNIST digits, a standard dataset), augmented with two core capabilities:

1. SCM interface. As a subclass of CausalGym’s SCM class, an environment can encode
explicit structural equations for all relevant variables, including observed covariates, actions,
rewards, latents, and confounders. It exposes adjacency matrices detailing the causal graph
that the SCM is associated with. Additionally, each environment is equipped with a default
behavioral policy that acts as the expert, making imitation learning more accessible.

2. PCH interface. A PCH-extending wrapper of the SCM environment enables performing
queries following Pearl’s Causal Hierarchy, using see() and do(action) for observational
and interventional rollouts. This allows the same simulation to be acted upon by a mixture
of expert and imitator policies, for example making it possible to deploy the imitator to take
over in the middle of an expert demonstration.

Below we describe the environments we built, which grow in complexity from a toy proof-of-concept
to a high-dimensional continuous control task.

4.1 MNIST digits

As a first sanity check, we re-implement the single-step MNIST digits experiment from Zhang et al.
[2020] using the same parameterization and underlying mechanisms of the SCM. As seen in Fig. 1,
the latent variable is a binary confounder U that flips the expert’s class label with some probability.
The observed variables are the expert’s corrupted label X and the rendered digit image W . There is a
surrogate, S, of the latent reward Y .

Figure 1: Causal Graph for MNIST digits.

By wrapping the MNIST digits dataset in an SCM/PCH pair, we can use the single-step algorithm
from Section 3.1 to discover the π-backdoor set {W}, train a causal imitator to predict P (S | W ),
and confirm that it recovers true labels despite label-noise confounding. This toy task verifies our
pipeline and end-to-end before moving to richer control environments.

4.2 Highway

4.2.1 Single-step highway

We implement a one-shot imitation on the classic Gymnasium highway environment (Leurent [2018]),
drawing data from the environment that mimics the highD dataset (Krajewski et al. [2018]) in the
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scenario of a single longitudinal decision. The observed covariate is the velocity of the front car Z,
and the ego velocity is the action X; the latents are its tail light indicator L and a weather condition
U . The causal graph matches that of Zhang et al. [2020]’s highD experiment as seen in Fig. 2.

Figure 2: Causal Graph for Single-step Highway.

This environment provided a single-step representation of a Gymnasium environment, paving the
way for more complex environments using sequential mechanisms, setting up for the transition to
sequential imitation learning in a measurable manner.

4.2.2 Sequential highway

To move from one-shot to multi-step control, we parameterize the full Gymnasium highway environ-
ment as a time-unrolled SCM with a cumulative reward. The variables are:

• Dt: whether the vehicle in front is too close.

• Lt: ego vehicle’s current lane.

• At, Bt: whether the left and right lanes are open, respectively.

• Wt: whether the dashboard warning sign is on.

• It: whether the front car’s brake light is on.

• Ut: foggy weather.

The latent variable It, representing the front car’s tail light which turns on when it is braking, is latent
only to the imitator. To motivate the problem, this is because the imitator represents a drone flying
far above the road, whereas the expert is the actual driver and can observe the smaller details of the
environment such as It.

The unobserved confounder Ut, representing foggy weather (see Fig. 3a, affects: (i) the lane reading,
making it noisy due to the visual impairment induced by fog; (ii) the dashboard warning light, causing
it to flash with a higher probability; and (iii) the latent reward Y , which punishes reckless driving in
fog as an incentive to exercise caution whereas it would otherwise reward driving fast.

(a) (b)

Figure 3: (a) Highway environment showing the unobserved confounder Ut (fog) and the yellow
dashboard warning light Wt. The faint green blob below the ego vehicle signifies that due to the
fog, the driver incorrectly thinks it is in the rightmost lane instead of the second-rightmost lane. Not
pictured: an orange indicator for It at the backside of the car in front of the ego vehicle, only on when
it is braking. (b) Highway environment showing what the imitator sees, in the middle of a merge
toward the right lane.
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This parameterization of the highway environment induces a complex SCM with many intra- and
inter-timestep relationships, with substantial unobserved confounding. It also creates an issue for
non-causal imitators: the observed covariate W is biased, and has no influence on the expert’s
decision-making. As seen in Fig. 4, there is no edge from any Wt to any Xt. In Section 5, it is
demonstrated that this bias does indeed hinder performance of naive imitators, while a causal imitator
can successfully ignore this bias and outperform its counterpart.

Figure 4: Causal Graph for Sequential Highway.

4.2.3 MDP highway

Although the Ruan et al. [2023] and Ruan et al. [2024] algorithms are not implemented yet, we
include a variation of the highway environment that is compatible with the Causal GAIL methodology
used in these algorithms for inverse reinforcement learning and partially identifiable MDPs. The
principal modification from the sequential highway parameterization is the switch from a cumulative
reward to one that is evaluated at every timestep, validating the Markovian assumption. See Fig. 5 for
the associated causal graph.
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Figure 5: Causal Graph for MDP Highway.

4.3 Racetrack

We also model a sequential racetrack scenario from the same Gymnasium suite (Leurent [2018]) with
two key distinctions:

1. Continuous actions. Instead of choosing to either speed up, slow down, merge left, merge
right, or do nothing, the ego vehicle must meticulously control its heading by steering.
The action space is Xt ∈ [−1, 1]. Whereas training a policy on the previous environments
was achievable using a discrete input dimension and cross entropy loss, this environment
necessitates functionality for handling a continuous action space and using MSE-based
regression with tanh outputs.

2. Higher-dimensional covariates. We track a continuous lane-centering score Ct ∈ [−1, 1]
and heading error Ht ∈ [−π, π], in addition to a binary dashboard warning light Wt to
similarly introduce bias, an unobserved confounder modeling fog (Ut), and a latent covariate
D—constant throughout each simulation— representing the driver being drunk or otherwise
kinetically and cognitively impaired.

Figure 6: Causal Graph for Racetrack

The causal graph is modeled in Fig. 6. By including an environment with more realistic states and
actions, we further demonstrate the practicality of causal imitation learning in real-life scenarios.
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Figure 7: Racetrack environment showing Ut (foggy weather) and Wt (orange dashboard warning
sign) while the ego vehicle attempts to stay at the center of the lane without slowing down.

5 Experiments

To demonstrate causal imitation learning and the feasibility of the API introduced in this paper, we
focus here on the two substantive control tasks: sequential highway and racetrack.

Findings for the MNIST digits and single-step highway environments, which served as proofs of
concept for the imitation learning algorithm and the CausalGym compatibility respectively, are
detailed in Appendix B.

5.1 Highway

For the first significant environment, as opposed to the previous prototypes, an experiment on a
much larger scale was conducted. We chose a length of 100 timesteps to fully capture temporal
dependencies, encourage long-term decision making, and highlight potential growing impacts of bias
over time.

Using the imitation pipeline, the sequential highway graph was unrolled into 100 timesteps and fed
into the algorithm to find the set of sequential π-backdoor sets Z that map to each action Xi ∈ X.
The resulting sets included every observed covariate from i = 0 until current timestep i = t, except
every W0:i. Especially at later timesteps, this intentionally led to a high-dimensional input which
serves this paper’s goal of evaluating causal imitation learning under such conditions. The naive
imitator’s sets, however, included every observed variable as a way to represent its inability to use the
causal graph to find optimal adjustment sets.

Using the default expert policy, 1000 trajectories were collected as samples for policy training. Then,
a neural network was trained for each timestep to assemble a set of temporal policies for each imitator:
conditioning on Zi ∈ Z for each Xi for the causal imitator, and conditioning on Oi ∈ O for each Xi

for the naive imitator.
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Figure 8: Expected cumulative reward per episode of at most 100 steps in the highway environment.

The policies were then rolled out for 1000 episodes each, and evaluated by comparing their reward
distributions with each other as well as with the expert’s. As seen in Fig. 8, although neither imitator
achieves perfect imitation (likely due to the small sample size, imperfect expert, and computation
limitations), it is evident that the causal imitator significantly outperforms the naive baseline.

Figure 9: Confusion matrix modeling imitator action predictions before deployment in the highway
environment.

In addition to measuring the imitators by average reward, we conducted an extensive analysis of the
reason for this performance gap. Fig. 9 displays a confusion matrix visualizing the imitators’ action
prediction compared to the expert’s. Applying the policies to the expert’s own trajectories enabled
direct comparison of the imitators, resulting in an interesting observation: the predictions are virtually
the same.

This is because even the naive imitator is a deep neural network, meaning it is capable of learning
its dataset to a very high accuracy. Therefore, the difference in performance would not be shown
by predicting the expert’s dataset, as it is still susceptible to overfitting to the biased Wt; rather,
this phenomenon verifies that the difference in performance between the causal and naive imitators
arose after training and during deployment, thus reinforcing the importance of the causal approach in
combating safety concerns.
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Figure 10: Action variation across states where Wt = 0 and Wt = 1 in the highway environment.

To confirm this, we compiled the trajectories from the 1000 episodes of deployment from each
imitator and the expert and modeled their decision-making under different conditions, namely under
different Wt values. For each agent, we split the trajectories into groups based on the observed
value of Wt. Then, we calculated the difference of their action choices between the two groups,
with the variation for each action is plotted in Fig. 10 (where a variation of 0 represents the exact
same frequency across the two state groups for that action). The result confirms that the difference
in performance can indeed be attributed to the naive imitator mistakenly assuming that the expert’s
policy is influenced by Wt because it notices some correlation but does not have access to the causal
graph. Therefore, it overfits to the trajectories it was trained on, which in turn leads to suboptimal
performance. This is corroborated by the similarity between the expert’s variation and the naive
imitator’s variation, especially for the actions IDLE and FASTER which the expert chooses based on
its estimate of Ut. In other words, the expert’s variation is a result of confounding, not a causal effect;
in the naive imitator’s case, however, it is a causal effect. In contrast, the causal imitator does not
condition on Wt at all—as seen through its near-zero variation across all actions—and ultimately
achieves better imitation and better performance.

5.2 Racetrack

For the racetrack environment, the methodology from the previous experiment was repeated with
a continuous action space in mind instead of a discrete action space. The results, however, failed
to meaningfully distinguish between causal and naive imitation in terms of either performance or
variation (See Fig. 11). The most likely explanation for this is that the underlying SCM mechanism
does not induce a meaningful bias in relation to Wt, which could be due to the lack of substantial
effect of Ut on either Wt or Y .
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Figure 11: Expected cumulative reward per episode of 200 steps in the racetrack environment.

In summary, these experiments show that by avoiding spurious correlations, causal imitators are
capable of exceeding standard behavioral cloning baselines in scenarios where bias is substantial,
though they are not guaranteed to significantly outperform the baselines in every task: in lightly
confounded settings, we observe only modest gains by using causal adjustment. Furthermore, it
is shown that this paper’s contribution, the causal imitation learning API for CausalGym, has real,
empirical applicability.

6 Future Work

While our current API and experiments demonstrate the feasibility of causal imitation learning
in discrete and continuous control tasks, there remain several promising directions to extend and
strengthen this work:

Causal GAIL and partial identification IRL. We plan to implement the adversarial imitation
and IRL algorithms of Ruan et al. [2023], Ruan and Di [2022] and Ruan et al. [2024] within the
CausalGym framework. Concretely, this involves:

• Embedding the π-backdoor adjustment into the GAIL discriminator–policy loop (Causal-
GAIL), so that occupancy matching occurs only over valid adjustment sets.

• Extending to partially identifiable MDPs (CAIL-R and CAIL-T), where either transitions or
rewards are hidden confounded, and deriving worst-case performance bounds under partial
identification.

Expanded Environment Suite. To stress-test causal imitation in richer traffic scenarios, we will
wrap additional tasks from the Highway collection—such as the multi-lane merge environment and
the roundabout environment—each with its own SCM parameterization and dynamic confounders
(e.g. merging traffic, circulatory right-of-way). This will further validate the generality of our API
and expose new forms of spurious correlation in sequential control.

Lunar Lander. The classic continuous-control Lunar Lander environment offers both high-
dimensional state (position, velocity, angle, leg contact sensors) and continuous thrust controls.
By constructing an SCM with latent wind gusts or sensor noise as confounders, we can evaluate
causal imitation in a challenging, 2D physics domain, and compare performance against standard BC
and model-based IRL approaches.

Comprehensive Benchmarking. Finally, we will conduct a large-scale empirical comparison of:

• All implemented causal imitation algorithms (single-step π-backdoor, sequential π-backdoor,
Causal-GAIL, partial-ID IRL).

11



• A suite of environments (MNIST digits, highway variants, racetrack, merge, roundabout,
lunar lander).

• Multiple confounding regimes (varying strength, time-varying vs. static, deterministic vs.
stochastic confounders).

This benchmarking effort will quantify the regimes in which causal adjustment yields the greatest
gains, characterize sample-efficiency trade-offs, and surface practical recommendations for practi-
tioners.

Together, these extensions will turn CausalGym into a comprehensive experimental platform for
research at the intersection of causality and reinforcement learning.

7 Conclusion

In this work, we have presented causal imitation learning functionality for CausalGym, a unified
Python framework that brings modern causal inference theory into practical reinforcement learning
pipelines. Starting from the π-backdoor criteria of Zhang et al. [2020] and Kumor et al. [2021], we
have implemented:

• An end-to-end API for single-step and sequential causal imitation, including automated and
generalized adjustment-set discovery, expert trajectory collection, and policy estimation
under both discrete and continuous action spaces.

• A family of SCM/PCH wrappers for classic Gymnasium environments, each exposing rich
causal graphs with latent confounders and dynamic dependencies.

• Empirical demonstrations that, in environments with substantial hidden bias, causal imitators
consistent recover more of the expert’s performance than standard behavioral cloning.

Beyond validating causal adjustment in high-dimensional control, our implementation lowers the
barrier for researchers to explore Causal RL tasks in new domains. By integrating graph utilities,
PCH queries, and flexible policy training modules, CausalGym serves both as a practical toolkit for
safety-critical imitation learning.

Looking forward, we believe that extending this framework to adversarial IRL (Causal-GAIL), partial
identification methods, and an expanded suite of environments will further illuminate when and how
causality unlocks robust imitation. Ultimately, our goal is to make causal reinforcement learning as
readily accessible and empirically grounded as the state-of-the-art deep-RL toolkits.
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A Codebase and demonstrations

The codebase of the causal imitation API and CausalGym can be found at causalgym and causalrl
under the branch "eylam-imitation."

Additionally, video recordings of expert, causal imitator, and naive imitator episodes can be found at
this Google Drive link.

B Proof-of-concept experiments

During the development of the causal imitation learning API and the CausalGym environment suite,
the single-step MNIST digits and highway environments were used to validate the functionality of
each phase of development before transitioning to the more complex sequential task.

B.1 MNIST digits

Due to the MNIST digits environment’s exact mimicking of the experiment setup from Zhang
et al. [2020], no large-scale experiment was conducted for this environment. Instead, we used the
environment’s interface to validate that the algorithm for finding π-backdoor sets in single-step
scenarios is working as intended, and then, simulated a sample of expert runs (e.g. Fig. 12) to confirm
that the expected reward E[Y ] matches the previous experiment.

Figure 12: Example of successful digit prediction from an MNIST image.

This sanity check verified that the causal imitation pipeline is working as intended, including graph
parsing, adjustment set discovery, conditional training, and PCH queries.

B.2 Single-step Highway

The objective for the single-step highway environment was to provide a transition from controlled
datasets to data generation from a real stochastic environment before proceeding to sequential
imitation learning. As such, the entire pipeline was invoked to train a causal imitator and a naive
imitator on a collection of expert trajectories that included one state-action pair per record. Due to the
small scale of this experiment and its purpose as a stepping stone toward its sequential counterparts,
the results were modest in terms of performance difference between the causal and naive imitators.
As seen in Fig. 13a, the causal imitator performed better by a trivial amount, although this amount has
remained consistent over multiple repetitions of the experiment. The L1 distance showed a similar
pattern of slight improvement with the causal approach, as seen in Fig. 13b.
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(a)

Imitator L1 Distance

Causal 0.10
Naive 0.13

(b)

Figure 13: (a) Performance E[Y ] after 128 samples in the single-step highway environment; (b)
Corresponding L1 distances between the imitators’ and the expert’s predictions.
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